

 Project: Bit Ultra (BLT)

 Platform: Binance Smart Chain

 Language: Solidity

 Date: October 9th, 2024

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………..… 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………….8

Code Quality ……………………………………………………………………………………. 9

Documentation …………………………………………………………………………………..9

Use of Dependencies ……………………………………………………………………………9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………… 23

● Slither Report Log ……………………………………………………………………….. 25

http://www.privacy.com.sg/
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.2et92p0
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.tyjcwt
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.4d34og8

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Introduction

Privacy Ninja was contracted by the BLT team to perform the Security audit of the Bit Ultra

(BLT) smart contracts code. The audit has been performed using manual analysis as well

as using automated software tools. This report presents all the findings regarding the audit

performed on October 9th, 2024.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contracts.

Project Background

● BLT Contracts handle multiple contracts, and all contracts have different functions.

● Here's a brief overview of the key components and functionalities of the provided

code:

○ BitUltra: The contract implements an ERC20 token called BitUltra (BLT) with

special features, such as a whitelist system that controls which addresses can

receive tokens via transfers.

○ BLTVaultContract: This contract manages a token release schedule for the

BLT token, governed by phases and blocks.

● There are 2 smart contracts files that were included in the audit scope.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Audit scope

Name Code Review and Security Analysis Report for Bit Ultra

(BLT)Smart Contracts

Platform Binance Smart Chain / Solidity

File 1 BitUltra.sol

File 1 Smart Contract 0xB95462682257e272E7D32c4214A3197a3B7cCf5e

File 2 BLTVaultContract.sol

File 2 Smart Contract 0x99482b6fb63f6367571dbe629380de0836edbebc

Audit Date October 9th, 2024

http://www.privacy.com.sg/
https://bscscan.com/address/0xB95462682257e272E7D32c4214A3197a3B7cCf5e#code
https://bscscan.com/address/0x99482b6fb63f6367571dbe629380de0836edbebc#code

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Claimed Smart Contracts Features

Claimed Feature Detail Our Observation

File 1 : BitUltra.sol

● Name: Bit Ultra

● Ticker: BLT

● Max supply: 2.1 billion BLT tokens

● Decimal: 18

Owner Specification:

● The whitelistUsers function allows the contract

owner to whitelist multiple addresses at once,

ensuring that only whitelisted addresses can

receive tokens when the whitelist is active.

● The disableWhitelist function allows the owner to

permanently disable the whitelist once, locking

the functionality to prevent future modifications.

● The current owner can transfer the ownership.

● The owner can renounce ownership.

YES, This is valid.

We advise renouncing

ownership once the

ownership functions are no

longer needed. This will

make the smart contract

100% decentralized.

File 2: BLTVault.sol

Owner Specification:

● Calculate and claim tokens based on the current

block and phase.

● Start the release phases by setting the start block

for phase 1.

● The current owner can transfer the ownership.

● The owner can renounce ownership.

YES, This is valid.

We advise renouncing

ownership once the

ownership functions are no

longer needed. This will

make the smart contract

100% decentralized.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart contracts

are “Secured”.Also, these contracts contain owner control, which does not make them fully

decentralized.

You are here

We used various tools like MythX, Slither, and Remix IDE. At the same time, this finding is

based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable

vulnerabilities are presented in the Audit Overview section. The general overview is

presented in the AS-IS section and all identified issues can be found in the Audit overview

section.

We found 0 critical, 0 high, 0 medium, 0 low, and 7 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Technical Quick Stats

Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed

The solidity version is too old Passed

Integer overflow/underflow Passed

Function input parameters lack check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Moderated

Features claimed Passed

Other programming issues Moderated

Code Specification Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated

High consumption ‘storage’ storage Passed

Assert() misuse Passed

Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: PASSED

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Code Quality

This audit scope has 2 smart contract files. These smart contracts also contain Libraries,

Smart contracts inherits, and Interfaces. These are compact and well-written contracts.

The libraries in the BLT are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties/methods can be reused many times by other

contracts in the Fraxtor.

The BLT team has not provided scenario and unit test scripts, which would helped to

determine the integrity of the code in an automated way.

Some code parts are well-commented on smart contracts.

Documentation

We were given BLT smart contract code in the form of a BitUltra and BLTVaultContract web

URL.

As mentioned above, some code parts are well-commented. So, it is difficult to quickly

understand the programming flow as well as complex code logic. Comments are very helpful

in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries used in these smart contracts infrastructures are based

on well-known industry-standard open-source projects. And their core code blocks are

written well.

Apart from libraries, its functions are not used in external smart contract calls.

http://www.privacy.com.sg/
https://bscscan.com/address/0xB95462682257e272E7D32c4214A3197a3B7cCf5e#code
https://bscscan.com/address/0x99482b6fb63f6367571dbe629380de0836edbebc#code

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

AS-IS overview

BitUltra.sol

(1) Interface

(a) IERC20

(b) IERC20Metadata

(c) IERC20Errors

(d) IERC721Errors

(e) IERC1155Errors

(2) Inherited Contracts

(a) ERC20

(b) Ownable

(3) Events

(a) event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

(b) event Transfer(address indexed from, address indexed to, uint256 value);

(c) event Approval(address indexed owner, address indexed spender, uint256 value);

(4) Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 whitelistUsers external Infinite loops
possibility, Lack of

Functionality to
Remove

Whitelisted Users

Refer Audit
Findings

3 disableWhitelist external access only owner No Issue

4 transfer write Passed No Issue

5 onlyOwner modifier Passed No Issue

6 owner read Passed No Issue

7 _checkOwner internal Passed No Issue

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

8 renounceOwnership write access only owner No Issue

9 transferOwnership write access only owner No Issue

10 _transferOwnership internal Passed No Issue

11 name read Passed No Issue

12 symbol read Passed No Issue

13 decimals read Passed No Issue

14 totalSupply read Passed No Issue

15 balanceOf read Passed No Issue

16 transfer write Passed No Issue

17 allowance read Passed No Issue

18 approve write Passed No Issue

19 transferFrom write Passed No Issue

20 _transfer internal Passed No Issue

21 _update internal Passed No Issue

22 _mint internal Passed No Issue

23 _burn internal Passed No Issue

24 _approve internal Passed No Issue

25 _approve internal Passed No Issue

26 _spendAllowance internal Passed No Issue

BLTVault.sol

(1) Interface

(a) IERC20

(2) Inherited Contracts

(a) Ownable

(3) Events

(a) event TokensReleased(uint256 amount, uint256 currentBlock);

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

(b) event PhaseStarted(uint256 phaseIndex, uint256 startBlock);

(c) event AllPhasesCompleted();

(d) event Transfer(address indexed from, address indexed to, uint256 value);

(e) event Approval(address indexed owner, address indexed spender, uint256 value);

(f) event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

(4) Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 startPhases external access only owner No Issue

3 claimTokens external Potential High Gas
Usage in

claimTokens,
Inefficient Phase
Completion Logic

Refer Audit
Findings

4 getCurrentPhase read Inefficient Phase
Completion Logic

Refer Audit
Findings

5 getLastClaimedBlock read Passed No Issue

6 getReleaseSchedule external Compile time
warnings

Refer Audit
Findings

7 getCurrentSubpart read Passed No Issue

8 onlyOwner modifier Passed No Issue

9 owner read Passed No Issue

10 _checkOwner internal Passed No Issue

11 renounceOwnership write access only owner No Issue

12 transferOwnership write access only owner No Issue

13 _transferOwnership internal Passed No Issue

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and
can lead to token loss etc.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g. public access to crucial

Medium

Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens lose

Low

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant impact
on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can be
ignored.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No low-severity vulnerabilities were found.

Very Low / Discussion / Best practices:

(1) Infinite loops possibility: BitUltra.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structures.

● whitelistUsers() - users.length.

(2) Lack of Functionality to Remove Whitelisted Users: BitUltra.sol

The BitUltra contract currently lacks a mechanism for the owner to remove addresses from

the whitelist. This limitation can lead to security concerns, as it prevents the owner from

revoking access from users who may no longer need it or may have been compromised.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Resolution: We suggest implementing a remove whitelist user functionality to enhance

security and flexibility. Ensuring it includes checks for whitelistEnabled and whitelistLocked

to maintain the integrity of the whitelist system. If this is a part of the plan then disregard this

issue.

(3) Compile time warnings: BLTVaultContract.sol

Warning: This declaration shadows an existing declaration.

Resolution: The warning "This declaration shadows an existing declaration" indicates that

you have a variable or function name that conflicts with another one in the same scope or a

parent scope. To resolve this, you should rename the variable or function to something

unique. Check the surrounding code for existing declarations with the same name and

choose a distinct name to avoid ambiguity.

(4) Unused Mapping for Last Claimed Block: BLTVaultContract.sol

 mapping(address => uint256) private lastClaimedBlock;

The lastClaimedBlock mapping is declared but never updated or used in the contract,

making it redundant.

Resolution: Update the lastClaimedBlock mapping whenever a user successfully claims

tokens.

For example, after transferring tokens in the claimTokens function, set

lastClaimedBlock[msg.sender] = block.number;

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

(5) Potential High Gas Usage in claimTokens: BLTVaultContract.sol

The claimTokens function iterates over all phases, which can consume a lot of gas if there

are many phases or if called frequently.

Resolution: Optimize the function by adding a mechanism to skip already claimed phases

or breaking the claiming process into smaller chunks. Consider allowing users to claim

tokens for specific phases instead of all at once.

(6) Missing Specific User Claim Events: BLTVaultContract.sol

The TokensReleased event indicates that tokens have been released but does not specify

which user claimed them. This can make it challenging to track individual claims, especially

in cases where multiple users are interacting with the contract.

Resolution: To enhance transparency and accountability, you should emit a separate event

specifically for user claims. This could look like:

event UserTokensClaimed(address indexed user, uint256 amount);

Then, within the claimTokens function, emit this event right after transferring the tokens:

emit UserTokensClaimed(msg.sender, totalToClaim);

(7) Inefficient Phase Completion Logic: BLTVaultContract.sol

 // Check if all phases are completed

 if (getCurrentPhase() >= releaseSchedules.length) {

 allPhasesCompleted = true;

 emit AllPhasesCompleted();

 }

// Helper function to get the current phase based on the block

number

 function getCurrentPhase() public view returns (uint256) {

 require(releaseSchedules[0].startBlock > 0, "Phases have

not started");

 uint256 currentBlock = block.number;

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

 for (uint256 i = 0; i < releaseSchedules.length; i++) {

 ReleaseSchedule storage schedule =

releaseSchedules[i];

 if (currentBlock >= schedule.startBlock &&

currentBlock <= schedule.endBlock) {

 return i;

 }

 }

 return releaseSchedules.length; // If beyond all phases

 }

The logic for checking if all phases are completed within claimTokens can be inefficient and

could lead to unnecessary calculations.

Resolution: Maintain a counter or boolean that tracks the number of completed phases.

Update this counter whenever a phase is marked as complete, rather than recalculating

each time in the claim function.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key is compromised, then it would create trouble. The following

are Admin functions:

BitUltra.sol

● whitelistUsers: The owner can whitelist multiple addresses.

● disableWhitelist: The owner can disable the whitelist mechanism, but can only be

called once.

BLTVaultContract.sol

● startPhases: Start the release phases by setting the start block for phase 1 by the

owner.

● claimTokens: The owner can calculate and claim tokens based on the current block

and phase.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Conclusion

We were given a contract code in the form a BitUltra and BLTVaultContract web URL. And

we have used all possible tests based on given objects as files. We observed 7 very low

issues in the smart contracts. But those are not critical. So, it’s good to go for the mainnet

deployment.

Since possible test cases can be unlimited for such smart contract, we provide no such

guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static analysis

tools. Smart Contract’s high-level description of functionality was presented in the As-is

overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

http://www.privacy.com.sg/
https://bscscan.com/address/0xB95462682257e272E7D32c4214A3197a3B7cCf5e#code
https://bscscan.com/address/0x99482b6fb63f6367571dbe629380de0836edbebc#code

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The

goals of our security audits are to improve the quality of the systems we review and aim for

sufficient remediation to help protect users. The following is the methodology we use in our

security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the in-

scope code, we examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models and

attack surfaces. We read design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities

and seeing them through successful remediation. Whenever a potential issue is discovered,

we immediately create an Issue entry for it in this document, even though we have not yet

verified the feasibility and impact of the issue. This process is conservative because we

document our suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the suspicion with

unresolved questions, then confirming the issue through code analysis, live

experimentation, or automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our confirmation. After this

we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest

the requirements for remediation engineering for future releases. The mitigation and

remediation recommendations should be scrutinized by the developers and deployment

engineers, and successful mitigation and remediation is an ongoing collaborative process

after we deliver our report, and before the details are made public.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Disclaimers

Privacy Ninja Pte. Ltd. Disclaimer

The smart contract given for audit has been analyzed in accordance with the best industry

practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in

smart contract source code, the details of which are disclosed in this report, (Source Code);

the Source Code compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases is unlimited, the audit makes no statements or

warranties on the security of the code. It also cannot be considered as a sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other

statements of the contract. While we have done our best in conducting the analysis and

producing this report, it is important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug bounty program

to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their own

vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit security of

the audited smart contracts.

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Appendix

Code Flow Diagram - Bit Ultra (BLT)

BitUltra Diagram

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

BLTVault Diagram

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

Slither Results Log

Slither log >> BitUltra.sol

INFO:Detectors:
Context._contextSuffixLength() (BitUltra.sol#142-144) is never used and should be removed
Context._msgData() (BitUltra.sol#138-140) is never used and should be removed
ERC20._burn(address,uint256) (BitUltra.sol#552-557) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.20 (BitUltra.sol#11) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#93) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#121) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#151) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#316) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#634) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BitUltra.sol#734) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
solc-0.8.20 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
BitUltra.constructor(address) (BitUltra.sol#743-748) uses literals with too many digits:
 - _mint(msg.sender,2100000000 * 10 ** decimals()) (BitUltra.sol#747)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:BitUltra.sol analyzed (9 contracts with 93 detectors), 12 result(s) found

Slither log >> BLTVault.sol

INFO:Detectors:
BLTVaultContract.claimTokens() (BLTVault.sol#286-345) ignores return value by
bltToken.transfer(msg.sender,totalToClaim) (BLTVault.sol#336)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
BLTVaultContract.lastClaimedBlock (BLTVault.sol#250) is never initialized. It is used in:
 - BLTVaultContract.getLastClaimedBlock(address) (BLTVault.sol#363-365)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-state-variables
INFO:Detectors:
BLTVaultContract.claimTokens() (BLTVault.sol#286-345) performs a multiplication on the result of a division:
 - claimableSubParts = claimableBlocks / BLOCKS_PER_SUBPART (BLTVault.sol#303)
 - claimableTokens = claimableSubParts * schedule.tokensPerSubPart (BLTVault.sol#304)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
INFO:Detectors:
BLTVaultContract.claimTokens() (BLTVault.sol#286-345) uses a dangerous strict equality:
 - lastBlockToClaim == schedule.endBlock (BLTVault.sol#312)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
Reentrancy in BLTVaultContract.claimTokens() (BLTVault.sol#286-345):
 External calls:
 - bltToken.transfer(msg.sender,totalToClaim) (BLTVault.sol#336)

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

 State variables written after the call(s):
 - allPhasesCompleted = true (BLTVault.sol#342)
 BLTVaultContract.allPhasesCompleted (BLTVault.sol#247) can be used in cross function reentrancies:
 - BLTVaultContract.allPhasesCompleted (BLTVault.sol#247)
 - BLTVaultContract.claimTokens() (BLTVault.sol#286-345)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
BLTVaultContract.getReleaseSchedule(uint256).startBlock (BLTVault.sol#369) shadows:
 - BLTVaultContract.startBlock (BLTVault.sol#246) (state variable)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in BLTVaultContract.claimTokens() (BLTVault.sol#286-345):
 External calls:
 - bltToken.transfer(msg.sender,totalToClaim) (BLTVault.sol#336)
 Event emitted after the call(s):
 - AllPhasesCompleted() (BLTVault.sol#343)
 - TokensReleased(totalToClaim,currentBlock) (BLTVault.sol#338)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Different versions of Solidity are used:
 - Version used: ['^0.8.0', '^0.8.20']
 - ^0.8.0 (BLTVault.sol#224)
 - ^0.8.20 (BLTVault.sol#11)
 - ^0.8.20 (BLTVault.sol#93)
 - ^0.8.20 (BLTVault.sol#124)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
INFO:Detectors:
Context._contextSuffixLength() (BLTVault.sol#114-116) is never used and should be removed
Context._msgData() (BLTVault.sol#110-112) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.20 (BLTVault.sol#11) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BLTVault.sol#93) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.20 (BLTVault.sol#124) necessitates a version too recent to be trusted. Consider deploying with
0.8.18.
Pragma version^0.8.0 (BLTVault.sol#224) allows old versions
solc-0.8.20 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Loop condition i < releaseSchedules.length (BLTVault.sol#394) should use cached array length instead of referencing
`length` member of the storage array.
 Loop condition i < releaseSchedules.length (BLTVault.sol#294) should use cached array length instead of
referencing `length` member of the storage array.
 Loop condition i < releaseSchedules.length (BLTVault.sol#352) should use cached array length instead of
referencing `length` member of the storage array.
 Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cache-array-length
INFO:Slither:BLTVault.sol analyzed (4 contracts with 93 detectors), 18 result(s) found

http://www.privacy.com.sg/

Privacy Ninja Pte. Ltd. (Singapore) – www.privacy.com.sg

http://www.privacy.com.sg/

